

AVR32413: AVR32 AP7 Image sensor interface
driver

Features
• V4l2 introduction
• Image sensor interface driver
• Camera driver

1 Introduction
The image sensor interface (ISI) is available on the Atmel AVR®32AP700x
microcontroller series and can be used to connect various image sensors. This
application note describes how the ISI module can be used with Linux®.

32-bit
Microcontrollers

Application Note

Rev. 32084B-AVR32-08/08

2 AVR32413
32084B-AVR32-08/08

2 V4L2 introduction
The video for Linux 2 specification (V4L2) is the predecessor of the old video for
Linux specification (V4L). It specifies a standard API for a variety of devices but only
some of them are can really be labeled as “video devices”. The specification is
available from http://www.v4l2spec.bytesex.org. This specification describes the use
of the V4L2 API from the user-space. The documentation of V4L2 API in the kernel is
unfortunately not that good documented. Never the less an article series on
http://www.lwn.net/Articles/203924/ gives a short overview of all necessary parts and
in addition a driver skeleton (drivers/media/video/vivi.c) is available in the kernel
sources. This is a virtual driver that generates test patterns and does not need to
interface any hardware. This source code is also usable as template for an own V4L2
driver implementation.

V4L2 provides, among other things, a video capture interface which provides the
ability to grab video data from a tuner or a camera device.

The V4L2 API defines two different ways of transferring video data between user-
space and a driver. These are memory mapping and simple data copying from kernel
to user-space. Capturing uses the read() (data copy) interface of a driver to copy the
grabbed data to user space. This is slow due to the copy transaction and is therefore
only suited for a “single capture”. If a video stream should be acquired the memory
mapped interface of the V4L2 specification should be used to get the best
performance. The mmap() interface is used by a V4L2 driver to map either buffers
provided by the driver to user-space or buffers provided by a user-space application
to the driver.

3 Image sensor interface capabilities

3.1 Image processing paths
Whereas the ISI can process various input formats the output formats are limited to
three, depending on the configuration and the processing path. Two processing paths
are available and their capabilities are as described in following chapters.

3.1.1 Codec path

The codec path transforms the sensor data to a YCbCr 4:2:2 format. The exact
ordering in memory is described in Table 3-1. Each piece of pixel information Y, Cb
and Cr consists of a byte. The codec data path is mainly used to capture a single
frame and encode it afterwards in a user-space application. To get a frame from the
codec path use the capture interface of the driver.

This path has no support for linked list DMA operations and is therefore not optimal
for video streaming. Anyway streaming video is still possible if enough bandwidth is
available on the system and the DMA address of the frame buffer is switched in time.

Table 3-1 Codec path pixel data ordering
MSB LSB
Y(i+1) Cr(i) Y(i) Cb(i)

http://www.v4l2spec.bytesex.org/�
http://www.lwn.net/Articles/203924/�

AVR32413

 3

32084B-AVR32-08/08

3.1.2 Preview path

The preview path has the ability to store the incoming frames in a linked list of buffers.
This is also described in detail in the datasheet. Because of this buffer handling, this
processing path is preferred if video streaming is needed. The main purpose of this
path is to feed the LCD controller with incoming video frames and the video data is
therefore converted to RGB 5:5:5. The maximum output resolution on the preview
path is VGA (640x480). Larger input images can be scaled down by the module. The
data ordering of the preview path in memory is as described in Table 3-2:

Table 3-2 Preview path pixel data representation
MSB LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

The RBG output format of the preview path is not optimal for creating a video stream
or encoding and therefore the on-chip pixel co-processor (PICO) can be used to do a
conversion. This may be implemented in a user-space application.

In grayscale mode only the preview path is active and captures the image data
without any processing in memory. Table 3-3 shows the data ordering in memory in
grayscale mode. The unused bits are filled with 0.

Table 3-3 Grayscale mode output with 12-bit data input
GS mode DATA[31-24] DATA[32-16] DATA[15-8] DATA[7-0]

0 Data(ii)[11:4] Data(ii)[3:0],0x0 Data(i+1)[11:4] Data(i+1)[3:0],0x0

1 Data(ii)[11:4] Data(ii)[3:0],0x0 0x00 0x00

3.2 Input formats

3.2.1 RGB input

All possible RGB input combinations are listed in the device datasheet. These are the
RGB 8:8:8 and the RGB 5:6:5 formats in various ordering variations. The output of
the different processing paths is as described in the chapters before.

3.2.2 YCbCr input

Possible YCbCr inputs are listed in Table 3-4. The grey rows show input and ISI
configurations that can be used with codec and preview path at the same time. All
other combinations lead to a color corruption in the preview path.

If only the codec path is used it can be beneficial to use one of the unusual
configurations in order to get a specific V4L2 format without doing a software swap.

Table 3-4 YCbCr codec path output order

ISI input
ISI
configuration ISI codec path output

V4L format

Cb(i)Y(i)Cr(i)Y(i+1) UYVY (default) Y(i+1)Cr(i)Y(i)Cb(i)

Cb(i)Y(i)Cr(i)Y(i+1) VYUY (mode1) Y(i+1)Cb(i)Y(i)Cr(i)

Cb(i)Y(i)Cr(i)Y(i+1) YUYV (mode2) Cr(i)Y(i+1)Cb(i)Y(i)

Cb(i)Y(i)Cr(i)Y(i+1) YVYU (mode3) Cr(i)Y(i)Cb(i)Y(i+1) V4L2_PIX_FMT_VYUY

4 AVR32413
32084B-AVR32-08/08

ISI input
ISI
configuration ISI codec path output

V4L format

Cr(i)Y(i)Cb(i)Y(i+1) UYVY (default) Y(i+1)Cb(i)Y(i)Cr(i)

Cr(i)Y(i)Cb(i)Y(i+1) VYUY (mode1) Y(i+1)Cr(i)Y(i)Cb(i)

Cr(i)Y(i)Cb(i)Y(i+1) YUYV (mode2) Cb(i)Y(i+1)Cr(i)Y(i)

Cr(i)Y(i)Cb(i)Y(i+1) YVYU (mode3) Cb(i)Y(i)Cr(i)Y(i+1) V4L2_PIX_FMT_UYVY

Y(i)Cb(i)Y(i+1)Cr(i) UYVY (default) Cr(i)Y(i+1)Cb(i)Y(i)

Y(i)Cb(i)Y(i+1)Cr(i) VYUY (mode1) Cb(i)Y(i+1)Cr(i)Y(i)

Y(i)Cb(i)Y(i+1)Cr(i) YUYV (mode2) Y(i+1)Cr(i)Y(i)Cb(i)

Y(i)Cb(i)Y(i+1)Cr(i) YVYU (mode3) Y(i+1)Cb(i)Y(i)Cr(i)

Y(i)Cr(i)Y(i+1)Cb(i) UYVY (default) Cb(i)Y(i+1)Cr(i)Y(i)

Y(i)Cr(i)Y(i+1)Cb(i) VYUY (mode1) Cr(i)Y(i+1)Cb(i)Y(i)

Y(i)Cr(i)Y(i+1)Cb(i) YUYV (mode2) Y(i+1)Cb(i)Y(i)Cr(i)

Y(i)Cr(i)Y(i+1)Cb(i) YVYU (mode3) Y(i+1)Cr(i)Y(i)Cb(i)

3.2.3 Grayscale input

By selecting this mode the codec path is disabled and the data is stored directly
without any processing in the internal buffers.

Since the ISI module uses 12-bit in grayscale mode a sensor with 8-bit or lower data
width should be connected to the ISI module by starting from line 4. This has the
result that the data is aligned to a byte boundary. Table … shows how 8-bit data is
ordered in memory if the sensor is connected to the ISI module like discussed before.
Since the unused pins can be pulled low or high the state depends on the hardware
setup. This is represented by a “X” in the table.

Table 3-5 Grayscale mode output with 8-bit data input
GS mode DATA[31-24] DATA[32-16] DATA[15-8] DATA[7-0]

0 Data(i)[7:0] 0xX0 Data(i+1)[7:0] 0xX0

1 Data(i)[7:0] 0xX0 0x00 0x00

4 ISI Linux driver
The ISI Linux driver is available from avr32linux.org (if not included in the mainline
kernel) and the patch series, when applied, will add the platform device to the system.
In order to set up the correct values for the actually used input device the board code
has to be edited or a camera needs to be hooked to the ISI driver that provides the
needed data. Hooking a camera driver to the ISI module is optional and is discussed
in chapter 5.

The ISI image sensor driver provides two interfaces to grab video data. These
interfaces represent the two different capture paths in hardware. The read() interface
can be used to capture a single frame and the streaming interface to grab a video
stream.

 AVR32413

 5

32084B-AVR32-08/08

4.1 Board setup code
The ISI driver needs a valid platform device with the configuration information. In
order to add the platform device to the system the board setup code needs to be
edited.

In the board setup code add the includes:

#include <media/atmel-isi.h>

#include <linux/videodev2.h>

Then fill out the platform data structure.

static struct isi_platform_data __initdata isi_data = {

 .image_hsize = 320,

 .image_vsize = 240,

 .prev_hsize = 320,

 .prev_vsize = 240,

 .pixfmt = ATMEL_ISI_PIXFMT_CbYCrY,

 .capture_v4l2_fmt = V4L2_PIX_FMT_YUYV,

 .streaming_v4l2_fmt = V4L2_PIX_FMT_RGB555X,

 .cr1_flags = ISI_FULL | ISI_EMB_SYNC,

};

Available configuration options are listed in the above mentioned include files and
some of them are described in Table 4-1.

Table 4-1 ISI module parameters
Parameter name Parameter description Example values

image_hsize
Horizontal size of the sensor input
image.

320

image_vsize
Vertical size of the sensor input
image.

320

video_buffers Video buffers used. 4

prev_hsize
Image horizontal size of the
preview path output.

320

prev_vsize
Image vertical size of the preview
path output.

240

pix_fmt

Input format of the sensor. This is
related to the data ordering tables
in the datasheet.

ATMEL_ISI_PIXFMT_CbYCrY

cr1_flags

Signal polarity and other
configurations from ISI register
CR1.

ISI_EMB_SYNC | ISI_FULL

capture_v4l2_fmt

Use this parameter to pretend a
4VL2 output format for the capture
interface. Take a look at the
header file
include/linux/videodev2.h for valid
values. Set this value to 0 if the
default format
V4L2_PIX_FMT_YUYV should be
used.

0

6 AVR32413
32084B-AVR32-08/08

Parameter name Parameter description Example values

streaming_v4l2_fmt

Use this parameter to pretend a
V4L2 format for the streaming
interface. For now this is an
integer value. Take a look at the
header file
include/linux/videodev2.h for valid
values. Set this value to 0 if the
default format
V4L2_PIX_FMT_RGB555X should
be used.

0

The last step is to add the platform device by calling the function:

at32_add_device_isi(0, &isi_data);

More information about board setup code and how to edit it is described in the
application note “AVR32744 AVR32 Linux Custom Board Support” available from the
Atmel website.

4.2 Accessing the ISI driver form user-space
The ISI driver registers two V4L2 devices. They can be found in the /dev directory as
video0 and video1 device files. The numbering may be different if other video devices
are available on the system. To obtain the correct device go to the directory
/sys/class/video4linux/. Here are two directories, video0 and video1. Move into the
directory of interest and read out the data of the “name” file there (do a “cat name” on
the shell for instance). Two names are possible for the ISI V4L2 devices:

• atmel_isi_capture: This is the ISI V4L2 capture device. It uses the codec path of
the ISI module to capture single frames.

• atmel_isi_streaming: This is the ISI V4L2 streaming device. It uses the preview
path of the ISI module. It is also possible to configure this interface to use the
codec path instead but this is still experimental.

When you have decided which of these interfaces you want to use open the
corresponding file in the /dev directory. An example application that captures a single
frame is available on http://www.avr32linux.org. Further examples which include
streaming are available from http://www.thedirks.org/v4l2.

5 Camera driver
The ISI driver functionality was split into two parts in order to separate camera related
things from the basic capturing/streaming. It is optionally to hook a camera driver to
the ISI driver because some devices that provide the data do not have any use for an
interface to the ISI driver. This approach is necessary to be able to connect different
cameras without to rewrite the V4L2 driver. The interface between camera driver and
V4L2 ISI driver is able to provide various features such as video format negotiation or
starting and stopping of a capture. A user-space application can therefore use the
V4L2 API to interact with the camera and gain control of basic settings. All camera
specific functions can be implemented in a camera driver, such as talking to the
device over I2C, power up sequence and so forth.

The more advanced and camera specific configurations must be done in the camera
driver or from a user-space application by using a camera driver interface. This is
implementation specific and therefore just examples on how this can be done will be
mentioned here. A good starting point is the drivers for a Micron (MT9M112) and

http://www.avr32linux.org/�
http://www.thedirks.org/v4l2�

 AVR32413

 7

32084B-AVR32-08/08

Atmel (AT76C451BC-MY15AT) camera. The patches are available on
http://www.avr32linux.org.

The ISI module API is defined in drivers/media/video/atmel_isi.h and provides
following two functions for a camera driver.

int atmel_isi_register_camera(struct atmel_isi_camera *cam);

void atmel_isi_unregister_camera(struct atmel_isi_camera *cam);

The function atmel_isi_register_camera function can be called from a camera driver
to register itself. The atmel_isi_unregister_camera function removes the driver from
the ISI internal camera list. The parameter of both functions is a structure that needs
to be filled out from the camera driver. This structure looks as follows:

struct atmel_isi_camera {
 const char *name;
 struct module *owner;
 struct list_head list;
 unsigned int hsync_act_low:1;
 unsigned int vsync_act_low:1;
 unsigned int pclk_act_falling:1;
 unsigned int has_emb_sync:1;
 /* ISI supports up to 17 formats */
 unsigned int pixelformats[17];
 int (*get_format)(struct atmel_isi_camera *cam, struct atmel_isi_format *fmt);
 int (*set_format)(struct atmel_isi_camera *cam, struct atmel_isi_format *fmt);
 int (*start_capture)(struct atmel_isi_camera *cam);
 int (*stop_capture)(struct atmel_isi_camera *cam);
 struct atmel_isi *isi;
};
Fields that need to be filled out by the camera driver are.

• name: Name of the camera driver.
• hsync_act_low: Set to 1 if horizontal synchronization signal is active low. If active

high set it to 0.
• vsync_act_low: Set to 1 if vertical synchronization is active low. If not, set it to 0.
• pclk_act_falling: If the pixel data is valid at the falling edge of the pixel clock set it

to 1. Otherwise to 0.
• has_emb_sync: If the embedded synchronization mechanism is used, set it this

value to 1. If horizontal and vertical synchronization signals are used instead set
this value to 0.

In addition four functions must be implemented in the camera driver and the function
pointers in the above structure must be initialized to point to these functions. These
are functions that start/stop capturing (start_capture/stop_capture) and set/get the
camera video format (get_format/set_format). More functions may be implemented
later if more functionality of the V4L2 specification needs to be passed to the camera
driver.
The get_format function updates the fmt structure with the current camera settings.
This is all that needs to be done in this function. The set_format function must check
the provided fmt structure to decide whether it supports the requested settings or not.
If the format is valid it should configure the camera respectively. If the values are not
valid the camera driver should set these to the closest possible match.

8 AVR32413
32084B-AVR32-08/08

6 Using the ISI V4L2 driver with other software
Because the ISI driver is using the 4VL2 framework it is compatible with many video
players, streamer, grabber or encoder. This makes it possible to process the data
from the ISI in various open source applications. VLC (http://www.videolan.org) and
MPlayer are good candidates for this purpose. MPlayer is already available in the
AVR32 Buildroot build system.

Since the ISI output formats of both processing paths are not standard V4L2 formats
usually a swap of the pixel data has to be done before using these applications. The
on chip pixel co-processor is good for this task. Another possible way is to use “Table
3-4 YCbCr codec path output order” to choose a swapping that provides a valid
V4L2 format. Be aware that choosing a “non standard” will work only for the codec
path, the preview path will provide garbage data in this configuration since the YUV to
RGB conversion expects other input data.

6.1 Capture example application
On avr32linux.org an example program is available that shows how the capture
interface of the V4L2 images sensor interface can be used.

Following command line captures an image and saves it as “image.ppm” (make sure
that the capture interface is /dev/video0 because it may vary if you have other video
drivers installed):

capture –d/dev/video0 –o image.ppm

More information about the command line arguments is available on
http://avr32linux.org/twiki/bin/view/Main/AtmelIsiDriver.

6.2 Webcam example application
A simple command line tool that provides web-camera functionality is “webcam” from
the xawtv toolset (http://linux.bytesex.org/xawtv/).

The tool needs a valid configuration file to work properly. Following configuration
captures each second an image from /dev/video0 and places it into the folder /tmp.

[grab]

device = /dev/video0

width = 320

height = 240

delay = 1

quality = 75

trigger = 0

rotate = 0

[ftp]

host = localhost

user = nobody

pass = xxxxxx

dir = /tmp

file = webcam.png

tmp = imageup.png

http://www.videolan.org/�
http://linux.bytesex.org/xawtv/�

 AVR32413

 9

32084B-AVR32-08/08

local = 1

It is important to select a place that resides in RAM and additionally it should not be
mirrored/synced to flash. This ensures that the flash is not worn out by many updates
of the image. More information about the configuration is available on the website. To
start the application run it with the configuration file as argument. For example like:

webcam /etc/webcam.conf

To view the image on the web a valid html page is needed that provides a browser
with the link to the image. This file could look like this:

<head>

<meta http-equiv="refresh" content="1"; URL="http://example.net/">

</head>

<body>

<p></p>

</body>

The html file must be stored in a directory that the webserver is aware of and is
usually named index.html.

Some other useful tools are also available within the package like streamer and v4lctl.

6.3 Using the ISI driver with MEncoder
MEncoder is an encoding application that is included in the MPlayer project.
(http://www.mplayerhq.hu). It can encode a video stream to various formats (raw
output, MPEG-2, DivX …) and encapsulates them in different container formats such
as AVI, ASF or MP4. MEncoder is able to use a V4L2 device, such as the ISI Linux
driver, as input.

To capture a video over the codec path following command line for Mencoder is
possible:

mencoder –tv \
driver=v4l2:device=/dev/video1:width=320:height=240:noaudio tv:// \
-fps 15 -ofps 15 -ovc raw -o video.avi

This command will capture QVGA frames from the ISI and put them in an AVI
container format. The output stream has 15 frames per second (-ofps). The input
depends on the sensor output but here an estimation is made of 15 frames per
second (-fps). More information is available in the MEncoder, or rather MPlayer,
documentation on the web.

To get all available output formats run

mencoder –tv outfmt=help

To list all codec libraries use:

 mencoder –ovc help

Typical output switches are:

• raw: Output uncompressed video
• lavc: Use the libavcodecs library
All video container formats can be listed by:

 mencoder –of help

http://www.mplayerhq.hu/�

10 AVR32413
32084B-AVR32-08/08

Typical container formats are AVI and MPEG.

7 References
FOURCC codes: http://www.fourcc.org

VLC player: http://www.videolan.org

V4L2 wiki: http://www.linuxtv.org

V4L2 specification: http://www.v4l2spec.bytesex.org

V4L2 article http://www.lwn.net/Articles/203924/

Atmel camera patches. http://www.avr32linux.org

Webcam and other V4L tools: http://linux.bytesex.org/xawtv/

AVR32744 AVR32 Linux Custom Board Support: http://www.atmel.com

http://www.fourcc.org/�
http://www.videolan.org/�
http://www.linuxtv.org/�
http://www.v4l2spec.bytesex.org/�
http://www.lwn.net/Articles/203924/�
http://www.avr32linux.org/�
http://linux.bytesex.org/xawtv/�

32084B-AVR32-08/08

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 V4L2 introduction
	3 Image sensor interface capabilities
	3.1 Image processing paths
	3.1.1 Codec path
	3.1.2 Preview path

	3.2 Input formats
	3.2.1 RGB input
	3.2.2 YCbCr input
	3.2.3 Grayscale input

	4 ISI Linux driver
	4.1 Board setup code
	4.2 Accessing the ISI driver form user-space

	5 Camera driver
	6 Using the ISI V4L2 driver with other software
	6.1 Capture example application
	6.2 Webcam example application
	6.3 Using the ISI driver with MEncoder

	7 References

